A-LEVEL Mathematics

MFP2 Further Pure 2
Mark scheme

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

```
Key to mark scheme abbreviations
M mark is for method
dM
A
B
E
FT or ft or F
cao
CSO
AWFW
AWRT
ACF
AG
SC
OE
A2,1
-x EE
NMS
PI
SCA
C
sf
dp
```


No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, the principal examiner may suggest that we award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q 1	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & \frac{A}{2 r+1}+\frac{B}{2 r+3} \\ & A=\frac{1}{4} \quad B=\frac{1}{4} \\ & \frac{A}{3}+\frac{B}{5}-\frac{A}{5}-\frac{B}{7}+\ldots \\ & {[k]\left\{\frac{1}{3}+(-1)^{n+1} \frac{1}{2 n+3}\right\} \mathbf{O E}} \\ & \frac{1}{12}+(-1)^{n+1} \frac{1}{4(2 n+3)} \quad \mathbf{O E} \end{aligned}$	M1 A1 M1 dM1 A1	2	and attempt to find A or B $\frac{\frac{1}{4}}{2 r+1}+\frac{\frac{1}{4}}{2 r+3}$ OE clear attempt to use method of differences with "their" A and B condone,$+- \pm$ or $(-1)^{n}$ instead of $(-1)^{n+1}$; may have r for n must have n
	Total		5	
(b)	For dM1 correct two remaining terms may be on separate lines with other terms crossed out Example $1 \frac{1}{3}-\frac{1}{(2 n+3)}$ earns M1 dM1 Example $2 \frac{1}{12} \pm \frac{1}{(2 n+3)}$ earns M1 dM0 Alternative for final A1: n even $\frac{1}{12}-\frac{1}{4(2 n+3)} ; n$ odd $\frac{1}{12}+\frac{1}{4(2 n+3)}$			

Q 2	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \alpha+\beta+\gamma=-6+3 \mathrm{i} \\ & \alpha=-3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	PI by correct α
(b) (i)	$\begin{gathered} \sum \frac{1}{\alpha \beta}=\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma} \quad \text { or } \quad \mathrm{i}=\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma} \\ q=\frac{6-3 \mathrm{i}}{\mathrm{i}} \quad \text { or } \quad \alpha \beta \gamma=3+6 \mathrm{i} \quad \text { OE } \end{gathered}$	M1 A1		or $\alpha+\beta+\gamma=\mathrm{i} \alpha \beta \gamma$ $q,-q$ or $\alpha \beta \gamma$ correct unsimplified PI by correct q
	$q=-3-6 \mathrm{i} \quad$ OE	A1	3	
	$-27+9(6-3 \mathrm{i})-3 p-3-6 \mathrm{i}=0$	M1		correctly substituting "their" values for α and q into equation
	$p=8-11 \mathrm{i} \quad$ OE	A1	2	
(c)	$\sum \alpha^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$	M1		correct identity
	$=11-14 \mathrm{i} \quad$ OE	A1cso	2	
	Total		9	
(b)(i)	Withhold final A1 if $\alpha+\beta+\gamma=6-3 \mathrm{i}$ and $\alpha \beta \gamma=q$ leads to correct answer and write FIW			
	Do not treat " 1 " for " i " as a misread, simply an error			
(b)(ii)	$\begin{aligned} & \text { Alternative } \beta \gamma=\frac{\text { "their" } \alpha \beta \gamma}{\alpha}=\text { "their"-1-2i ; } \quad p=\alpha \beta+\beta \gamma+\gamma \alpha=\text { "their } \alpha "(\beta+\gamma)+\beta \gamma \mathbf{M 1} \text {; } \\ & p=8-11 \mathrm{i} \mathbf{A 1} \end{aligned}$			
(c)	Withhold A1cso if $\alpha+\beta+\gamma=6-3 \mathrm{i}$ is seen even if correct answer is given and write FIW			

\begin{tabular}{|c|c|c|c|c|}
\hline Q 3 \& Solution \& Mark \& Total \& Comment

\hline (a)

(b) \& \[
$$
\begin{aligned}
& \cosh x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2} \text { and } \sinh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2} \\
& \begin{array}{r}
1+\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=\mathrm{e}^{x}-\mathrm{e}^{-x} \\
a \mathrm{e}^{2 x}+b \mathrm{e}^{x}+c(=0) \\
\mathrm{e}^{2 x}-2 \mathrm{e}^{x}-3(=0) \quad \text { OE } \\
\left(\mathrm{e}^{x}-3\right)\left(\mathrm{e}^{x}+1\right) \quad(=0) \\
\mathrm{e}^{x}=3 \Rightarrow x=\ln 3
\end{array} \\
& \pi \int_{0}^{\ln 2}(1+\cosh x)^{2} \mathrm{~d} x \\
& \cosh ^{2} x=\frac{1}{2}+\frac{1}{2} \cosh 2 x \quad \text { OE } \\
& \int=x+2 \sinh x+\frac{1}{2} x+\frac{1}{4} \sinh 2 x \\
& \pi\left(\ln 2+2 \sinh (\ln 2)+\frac{1}{2} \ln 2+\frac{1}{4} \sinh (2 \ln 2)\right) \\
& (\text { Volume }=) \quad \frac{\pi}{32}(63+48 \ln 2)
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| dM1 |
| A1 |
| B1 |
| B1 |
| M1 |
| A1 |
| A1 | \& 5 \& | $\mathrm{e}^{x}-3 \mathrm{e}^{-x}-2=0$ |
| :--- |
| obtaining 3 term quadratic in e^{x} correct |
| attempt at factors or correct use of formula or PI by both correct values 3 and -1 and no other value given |
| correct expression for volume all on one line including limits, π and $\mathrm{d} x$ or $\cosh ^{2} x=\frac{1}{4}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right)$ "their" $\cosh ^{2} x$ term correctly integrated integral all correct |
| Allow $\frac{\pi}{32}(48 \ln 2+63)$ |

\hline \& Total \& \& 10 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| If using formula they must have a simplified "correct" discriminant for "their" quadratic so if correct they must have $\mathrm{e}^{x}=\frac{2 \pm \sqrt{16}}{2}$ for dM1 ; if factorising, "their" factors must multiply out to give "their" $\mathrm{e}^{2 x}$ term and "their" constant term |
| :--- |
| Alternatives 1 \& 2 below involve squaring which if done correctly introduce spurious solutions that must be discarded by testing whether they satisfy the original equation and so c's are likely to lose final A1 |
| Alternative 1: $1+\cosh x=2 \sinh x \Rightarrow 1+2 \cosh x+\cosh ^{2} x=4 \sinh ^{2} x=4\left(\cosh ^{2} x-1\right)$ B1 leading to quadratic in $\cosh x$ M1 ; $3 \cosh ^{2} x-2 \cosh x-5(=0)$ A1 |
| $(3 \cosh x-5)(\cosh x+1) \quad(=0) \quad \mathbf{d M 1}$ "their" factors must multiply out to give "their" $\cosh ^{2} x$ term and "their" constant term ; PI by correct values $\frac{5}{3}$ and -1 ; A1 for $\cosh x=\frac{5}{3} \Rightarrow x= \pm \cosh ^{-1} \frac{5}{3} \quad$ (or $\pm \ln 3$) explaining why $x=-\ln 3$ must be rejected and giving the single solution $x=\cosh ^{-1} \frac{5}{3}$ (or $\ln 3$). |
| Alternative 2: $2 \sinh x-1=\cosh x \Rightarrow 4 \sinh ^{2} x-4 \sinh x+1=\cosh ^{2} x=1+\sinh ^{2} x$ B1 leading to quadratic in $\sinh x$ M1; $3 \sinh ^{2} x-4 \sinh x(=0) \quad \mathbf{A 1} ; \sinh x=0, \sinh x=\frac{4}{3} \mathbf{d M 1}$ (both) ; final A1 includes explaining why $x=0$ must be rejected and giving the single solution $x=\sinh ^{-1} \frac{4}{3}$ (or $\ln 3$). |
| Allow missing brackets if expanded correctly, namely $\pi \int_{0}^{\ln 2} 1+2 \cosh x+\cosh ^{2} x \mathrm{~d} x$ for first B1 Second B1 and M1 are available if they have different integrand (sometimes from using CSA formula) |}

\hline
\end{tabular}

Q 4	Solution	Mark	Total	Comment
(a) (b)	$9 k^{2}+17 k+6$ When $n=1 \quad L H S=2 ; \quad R H S=2$ Therefore (formula is) true when $n=1$ Assume result is true for $n=k$ (*) Add $(k+1)$ th term to both sides $\begin{array}{r} \begin{array}{r} \sum_{r=1}^{k+1} r(2 r-1)(3 r-1)=\frac{1}{6} k(k+1)\left(9 k^{2}-k-2\right) \\ \\ \\ +(k+1)(2 k+1)(3 k+2) \end{array} \\ =\frac{1}{6}(k+1)\left\{\left(9 k^{3}-k^{2}-2 k\right)+6(2 k+1)(3 k+2)\right\} \\ \frac{1}{6}(k+1)\left\{9 k^{3}+35 k^{2}+40 k+12\right\} \\ \frac{1}{6}(k+1)(k+2)\left(9 k^{2}+17 k+6\right) \\ \frac{1}{6}(k+1)(k+2)\left\{9(k+1)^{2}-(k+1)-2\right\} \end{array}$ Hence formula is true for $n=k+1\left({ }^{* *}\right)$ and since true for $n=1$, formula is true for $n=1,2,3, \ldots$ [by induction] ${ }^{(* * *)}$	B1 B1 M1 A1 A1 A1 E1	1	must have this explicit statement adding correct $(k+1)$ th term to RHS both sides correct A0 if only RHS considered correct quartic is $\frac{1}{6}\left\{9 k^{4}+44 k^{3}+75 k^{2}+52 k+12\right\}$ cubic need not have all like terms collected must see this line to earn final A1 from part (a) must have $\left({ }^{*}\right),\left({ }^{* *}\right)$ and $\left({ }^{* * *}\right)$ and have earned previous 5 marks
	Total		7	
(b)	For B1, accept " $n=1$ RHS $=$ LHS $=2$ " but must mention here or later that the result is "true when $n=1$ " Do not allow them to simply say "true for all integers $n \ldots 1$ " at the end to earn this $\mathbf{B 1}$ mark. This is $\mathbf{B 0}$. Alternative to $\left({ }^{* * *}\right)$ is "therefore true for all positive integers n " or " so true for all integers $n \ldots 1$ " etc However, "rrue for all $n \ldots 1$ " is incorrect and immediately gets $\mathbf{E 0}$ Condone LHS $=1 \times 1 \times 2+2 \times 3 \times 5+\ldots+(k+1)(2 k+1)(3 k+2)$ OE for first A1 but must have "..." May define $\mathrm{P}(k)$ as the "proposition that the formula is true when $n=k$ " and earn full marks. However, if $\mathrm{P}(k)$ is not defined then allow $\mathbf{B 1}$ for showing $\mathrm{P}(1)$ is true but withhold $\mathbf{E} 1$ mark.			

Q 5	Solution	Mark	Total	Comment
(a)(i)	$\begin{aligned} & \tan ^{-1} \frac{3}{\sqrt{3}}=\frac{\pi}{3} \\ & (\arg \omega=) \frac{2 \pi}{3} \\ & \left(\|\omega-2 i\|^{2}\right)=(-\sqrt{3})^{2}+1^{2} \end{aligned}$$\|\omega-2 \mathrm{i}\|=2$	M1		or finding angle to $\operatorname{Im}(\mathrm{z})$ axis $=\frac{\pi}{6}$ PI by correct answer
		A1	2	
(ii)		M1		PI by correct answer
		A1	2	
(b)(i)		M1 A1		arc of circle in second quadrant circle centre at 2 i (2 marked on $\operatorname{Im}(z)$-axis) and touching real axis at O
	$\rangle^{\operatorname{Im}(z)} \uparrow$	M1		line from O to at least edge of circle
		A1		inclined at roughly $\frac{\pi}{3}$ to negative real axis as drawn
		A1	5	must have earned previous 4 marks correct shading of region bounded by line, imaginary axis and circular arc
(ii)	ω marked correctly	B1	1	clear intention to be at intersection point B0 if only line or circle drawn
(iii)	$\begin{aligned} & \text { Max value }=\left\|\frac{\omega}{2}-4 \mathrm{i}\right\| \text { or }\left\|-\frac{\sqrt{3}}{2}+\frac{3 \mathrm{i}}{2}-4 \mathrm{i}\right\| \\ & \text { or } \sqrt{\frac{\left.\omega\right\|^{2}}{4}+2^{2}} \text { etc ACF } \end{aligned}$	M1		correct expression- distance from $\frac{1}{2} \omega$ to 4 i that could be evaluated to give correct ans $d^{2}=\frac{\|\omega\|^{2}}{4}+4^{2}-4\|\omega\| \cos \frac{\pi}{6}$
	$=\sqrt{7}$	A1	2	
	Total		12	
(a)(i)	NMS $(\theta=) \frac{2 \pi}{3}$ M1 A1; $\quad \tan ^{-1}\left(-\frac{3}{\sqrt{3}}\right)=-\frac{\pi}{3} \quad$ or sight of $-\frac{\pi}{3}$ earns M1			
(b)(i)	Allow freehand circle and clear "intention" to touch real axis at origin First A1 : condone 2 i or $(0,2)$ or 2 clear dashes to indicate centre on $\operatorname{Im}(z)$ axis or radius indicated as 2 and circle touching real axis at O			
	Second A1 : award if angle made with negative $\operatorname{Re}(z)$ axis is greater than $\frac{\pi}{4}$			
(iii)	Condone circle/line as dotted lines NMS $\max =\sqrt{7}$ scores full marks			

Q 6	Solution	Mark	Total	Comment
	$\begin{aligned} & \frac{x^{2}}{2} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)-\int k x^{2} \frac{1}{1+\left(\frac{x}{\sqrt{3}}\right)^{2}}(\mathrm{~d} x) \\ & \frac{x^{2}}{2} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)-\int \frac{x^{2}}{2} \times \frac{1}{\sqrt{3}} \times \frac{1}{1+\frac{x^{2}}{3}}(\mathrm{~d} x) \\ & \frac{x^{2}}{x^{2}+A}=1-\frac{A}{x^{2}+A} \quad \text { OE } \\ & \begin{array}{r} \left.\begin{array}{r} \frac{x^{2}}{2} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right) \end{array}\right)-\frac{\sqrt{3}}{2} x+\frac{3}{2 \sqrt{3}} \times \sqrt{3} \times \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right) \\ \tan ^{-1}(1)-\frac{\sqrt{3}}{2} \sqrt{3}+\frac{3}{2 \sqrt{3}} \times \sqrt{3} \times \tan ^{-1}(1) \\ =\frac{3 \pi}{8}-\frac{3}{2}+\frac{3 \pi}{8} \quad=\frac{3 \pi}{4}-\frac{3}{2} \end{array} \end{aligned}$	M1 A1 B1F A1 A1 A1	6	Integration by parts - at least this far (denominator may be $3+x^{2}$) or $\frac{x^{2}}{2} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)-\int \frac{x^{2}}{2} \times \frac{\sqrt{3}}{3+x^{2}}(\mathrm{~d} x) \mathbf{O E}$ or $\frac{x^{2}}{1+\frac{x^{2}}{3}}=3-\frac{3}{1+\frac{x^{2}}{3}}$ etc correct unsimplified correct unsimplified sub of limits
	Total		6	
	Do NOT allow misread of $\frac{x}{3}$ for $\frac{x}{\sqrt{3}}$; it eases the question considerably Alternative 1: $x=\sqrt{3} u ; I=\int 3 u \tan ^{-1} u \mathrm{~d} u=\frac{3}{2} u^{2} \tan ^{-1} u-k \int \frac{u^{2}}{1+u^{2}} \mathrm{~d} u \mathbf{M 1} ; k=\frac{3}{2} \quad \mathbf{A 1} ; \frac{u^{2}}{1+u^{2}}=1-\frac{1}{1+u^{2}} \quad \mathbf{B} 1$; $\frac{3 u^{2}}{2} \tan ^{-1} u-\frac{3}{2} u+\frac{3}{2} \tan ^{-1} u \mathbf{A 1}$; then A1 A1 as above. Alternative 2: $x=\sqrt{3} \tan u ; \frac{\mathrm{d} x}{\mathrm{~d} u}=\sqrt{3} \sec ^{2} u \quad ; I=\int 3 u \tan u \sec ^{2} u \mathrm{~d} u$ $I=\frac{3}{2}\left[u \tan ^{2} u\right]-\int k \tan ^{2} u \mathrm{~d} u \quad \text { M1 } k=\frac{3}{2} \mathbf{A 1} \text { (correct) }$ replacing $\tan ^{2} u$ by $\sec ^{2} u-1$ in integral dM1 ; $I=\frac{3}{2}\left[u \tan ^{2} u\right]+\frac{3}{2} u-\frac{3}{2} \tan u \quad$ A1 ; then A1 A1 as above.			

Q 7	Solution	Mark	Total	Comment
(a) (b)(i) (ii)	Attempt to split into two terms using $\cosh ^{2} \theta= \pm 1 \pm \sinh ^{2} \theta$ $\begin{aligned} & \int\left(\frac{1}{\sinh \theta}+\sinh \theta\right)[\mathrm{d} \theta] \\ & \ln \left[\frac{\sinh \theta}{1+\cosh \theta}\right]+\cosh \theta \\ & s=\ln \left[\frac{2 \sqrt{2}}{1+3}\right]+3-\ln \left[\frac{1}{1+\sqrt{2}}\right]-\sqrt{2} \\ & 3-\sqrt{2}+\ln \left(1+\frac{\sqrt{2}}{2}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	4 3 8 7	quotient rule correct correctly simplified $\mathbf{A G}$ - no errors seen and $\mathrm{f}^{\prime}(\theta)=\ldots$ condone $\int \sqrt{1+\left(\frac{1}{x}\right)^{2}}(\mathrm{~d} x)$ for M1 Allow this mark but withhold final A1 mark if $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$ not seen AG (be convinced) must have " $s=$ ", limits and $\mathrm{d} x$ and must have $\sqrt{x^{2}+1}$ in numerator or $x=\tan \theta \quad \mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta$ $\int \frac{\sec \theta \sec ^{2} \theta}{\tan \theta} \mathrm{~d} \theta$ PI by correct split below correct split and must have integral sign integrating $\pm \frac{1}{\sinh \theta} \pm \sinh \theta$ correctly correct unsimplified AG partly so be convinced
	Total		13	
(a) (b)(ii)	Alternative: $[\mathrm{f}(\theta)=] \ln (\sinh \theta)-\ln (1+\cosh \theta)$ and one term differentiated correctly M1 $\begin{aligned} {\left[\mathrm{f}^{\prime}(\theta)\right.} & =] \frac{\cosh \theta}{\sinh \theta}-\frac{\sinh \theta}{1+\cosh \theta} \mathbf{A 1}=\frac{(1+\cosh \theta) \cosh \theta-\sinh ^{2} \theta}{\sinh \theta(1+\cosh \theta)} \mathbf{d M 1} \text { (common denominator) } \\ \mathrm{f}^{\prime}(\theta) & \left.=\frac{1}{\sinh \theta} \mathbf{A 1} \text { (AG no errors seen and } \mathrm{f}^{\prime}(\theta)=\ldots\right) \end{aligned}$ In alternative on RHS; B1 for using $\sec ^{2} \theta=1+\tan ^{2} \theta$ used in numerator; dM1 for splitting integrand $\pm \frac{1}{\sin \theta} \pm \sec \theta \tan \theta$ and $\mathbf{d M 1}$ for integrating correctly NB $\int(\csc \theta+\sec \theta \tan \theta) \mathrm{d} \theta=-\ln (\csc \theta+\cot \theta)+\sec \theta$			

Q 8	Solution	Mark	Total	Comment
(a)	$\cos 7 \theta+\mathrm{i} \sin 7 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{7}$	B1		or $\sin 7 \theta=\operatorname{Im}$ part of $(\cos \theta+\mathrm{i} \sin \theta)^{7}$ PI by later work
	$\begin{aligned} & {\left[c^{7}\right]+7 c^{6}(\mathrm{is})+\left[21 c^{5}(\mathrm{is})^{2}\right]+35 c^{4}(\mathrm{is})^{3}} \\ & {\left[+35 c^{3}(\mathrm{is})^{4}\right]+21 c^{2}(\mathrm{is})^{5}+\left[7 c(\mathrm{is})^{6}\right]+(\mathrm{is})^{7}} \end{aligned}$	M1		condone up to 2 errors in imaginary part of expansion for M1 - ignore real terms
	$\begin{gathered} 7\left(1-s^{2}\right)^{3}(\mathrm{i} s)+35\left(1-s^{2}\right)^{2}(\mathrm{is})^{3} \\ +21\left(1-s^{2}\right)(\mathrm{i} s)^{5}+(\mathrm{i} s)^{7} \end{gathered}$	$\begin{gathered} \text { A1 } \\ \text { dM1 } \end{gathered}$		correct imaginary terms correct use of $c^{2}=1-s^{2}$ in at least two imaginary terms - i.e. $c^{6}=\left(1-s^{2}\right)^{3}$ etc
	$\begin{aligned} & \sin 7 \theta=7 s\left(1-3 s^{2}+3 s^{4}-s^{6}\right) \\ & \quad-35 s^{3}\left(1-2 s^{2}+s^{4}\right)+21 s^{5}\left(1-s^{2}\right)-s^{7} \end{aligned}$	A1		RHS correct unsimplified expansion and equated to $\sin 7 \theta$
	$\frac{\sin 7 \theta}{\sin \theta}=7-56 \sin ^{2} \theta+112 \sin ^{4} \theta-64 \sin ^{6} \theta$	A1	6	AG be convinced - terms must be in this order
(b)(i)	$\sin 7 \theta=0 \Rightarrow 7 \theta=(n) \pi \Rightarrow \theta=(n) \frac{\pi}{7}$	M1		condone no mention of "but $\sin \theta \neq 0$ "
	$\left.\begin{array}{\|c} x=\sin ^{2} \theta \text { seen or used } \\ \text { so } \sin ^{2} \frac{\pi}{7} \text { is a root of cubic equation } \end{array}\right]$	E1		must earn M1 and have/use $x=\sin ^{2} \theta$ and statement
	other roots are $\sin ^{2} \frac{2 \pi}{7} \& \sin ^{2} \frac{3 \pi}{7}$ OE	B1	3	accept $\sin ^{2} \frac{4 \pi}{7} \& \sin ^{2} \frac{5 \pi}{7}$ etc but not $\sin ^{2} \frac{3 \pi}{7} \& \sin ^{2} \frac{4 \pi}{7}$ etc
(ii)	$\text { Considering } \sum \frac{1}{\alpha}$	M1		must relate $\sin ^{2} \frac{\pi}{7}$ etc to α, β, γ
	$\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}$	A1		
	$=\frac{56 / 64}{7 / 64}=8$		3	do not accept $\frac{56}{7}$ if using this approach
	Total		12	
(b)(i)	Condone reverse argument namely $\theta=\frac{\pi}{7} \Rightarrow \sin 7 \theta=0$ for M1 $\frac{\pi}{7}$ is a root of $\frac{\sin 7 \theta}{\sin \theta}=0$ earns M1			
(ii)	Alternative : put $z=1 / y$ M1 new equation $7 z^{3}-56 z^{2}+112 z-64=0$ NMS 8 scores no marks	sum	of these	$\text { roots }=\frac{56}{7}=8$ A1

